# E21 Press Brake Numerical Control Device Operation Manual 

V1.00

ESTUN AUTOMATION CO.,LTD

Address : No. 155 Jiangjun Road, Jiangning
Development Zone Nanjing P.R.C 211106
Postal code: 211106
TEL: 025-52785569
FAX: 025-52785966
WEB: www.estun.com
E-mail: info@estun.com

Preface

This manual describes operation of E21 numerical control device and is meant for operators who are instructed for operation of the device. Operator shall read through this manual and know operation requirements before using this device.

Copy right is preserved by ESTUN. It is not allowed to add or delete part or all of the manual content without ESTUN's consent. Do not use part or all of manual content for the third party's design.

E21 device provides complete software control and has no mechanical protection device for operator or the tool machine. Therefore, in case of malfunction, machine tool must provide protection device for operator and external part of the machine tool. ESTUN is not responsible for any direct or indirect losses caused by normal or abnormal operation of the device.

ESTUN preserves the right to modifying this manual in the event of function adding or print error.

## Content

Preface ..... 2
1 Product Overview ..... 4
1.1 Product introduction .....  4
1.2 Operation panel ..... 4
1.3 Displayer ..... 6
2 Operation Instruction ..... 7
2.1 Basic operation procedure. ..... 7
2.2 Programming .....  7
2.2.1 Single-step programming .....  7
2.2.2 Multi-step programming ..... 10
2.3 Parameter setting ..... 14
2.4 Manual movement ..... 16
3 Alarm ..... 18
3.1 Alarm ..... 18
Appendix 1 Common fault and troubleshooting ..... 20
Appendix 2 Acronym ..... 21

1

## Product Overview

### 1.1 Product introduction

This product is equipped with press brake machine dedicated numerical control device which is applicable to various users. On the basis of ensuring work precision, the cost of numerical control bending machine is reduced significantly

Features of this product are listed below:

1. Positioning control of back gauge.
2. Intelligent positioning control.
3. One-side and two-side positioning which eliminates spindle clearance effectively.
4. Retract functions.
5. Automatic reference searching.
6. One-key parameter backup and restore.
7. Fast position indexing.
8. 40 programs storage space, each program has 25 steps.
9. Power-off protection.

### 1.2 Operation panel

Operation panel is shown in Figure 1-1.


Figure 1-1 Operation panel
Functions of panel keys are described in Table 1-5.

Table 1-1 Description of key functions

| Key | Function description |
| :---: | :---: |
| \% | Delete key: delete all data in input area on left bottom of displayer. |
|  | Enter key: confirm the input content. If no content is input, the key has the similar function to direction key $\square$ |
|  | Start key: automatic start-up, in which o is operation indicator LED. When operation is started, this indicator LED is on. |
|  | Stop key: stop operation, in which is Stop indicator LED. When initialize normal start-up and no operation, this indicator LED is on. |
| 4 | Left direction key: page forward, cursor remove |
| $\checkmark$ | Right direction key: page backward, cursor remove |
|  | Down direction key: select parameter downward |
| P | Function switch: switch over different function pages |
| $\pm$ | Symbolic key: user input symbol , or start diagnosis. |


| Key | Function description |
| :---: | :---: |
| $0 \sim 9$ | Numeric key: when setting parameter, input value. |
| - | Decimal point key: when set up parameter, input decimal point. |
| $+$ | Manual movement key: in case of manual adjustment, make adjustment object move in forward direction at low speed. |
|  | Manual movement key: in case of manual adjustment, make adjustment object move in backward direction at low speed. |
| $++\sqrt{3}-=$ | High speed selection key: in case of manual adjustment, press this key and press simultaneously, make adjustment object move in increasing direction at high speed, then press $\square$ make adjustment object move in decreasing direction at high speed. |

### 1.3 Displayer

E21 numerical control device adopts $160 * 160$ dot matrix LCD displayer. The display area is shown in Figure 1-2.

| Title bar $\longleftarrow$ | Single |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | X: |  |  | 9875.965 |
|  | Y: |  |  | 9875.123 |
| Parameter display area | Xp: |  |  | 9875.965 |
|  | Yp: |  |  | 9875.965 |
|  | Dx: |  |  | 9875.965 |
|  | Dd: | 1000 | PP: | 1000 |
|  | Dly: | 1000 | CP: | 1000 |
| Status bar $\leftarrow$ | - Range: $^{\text {a }} 0 \sim 9999.999 \mathrm{~mm}$ |  |  |  |

Figure 1-2 Display area
In which

- Title bar: display relevant information of current page, such as its name, etc.
- Parameter display area: display parameter name, parameter value and system information.
- Status bar: display area of input information and prompt message, etc.


## 2

## Operation Instruction

### 2.1 Basic operation procedure

Basic switch over and operation procedure of the system is shown in 2-1.


Figure 2-1 Basic Operational Flow Chart

### 2.2 Programming

The system has two programming methods, which are single-step programming and multi-step programming. User can set up programming according to actual demand.

### 2.2.1 Single-step programming

Single-step programming is generally used for processing single step to finish work piece processing. When controller is power on, it will automatically enter single-step program page.

## Operation steps

Step 1 After starting up, the device will enter setting up page of single-step program automatically, as shown in Figure 2-2.

| Single |  |  |  |
| :---: | :---: | :---: | :---: |
| X: |  |  | 9875.965 |
| Y: |  |  | 9875.123 |
| Xp: |  |  | 9875.965 |
| Yp: |  |  | 9875.965 |
| Dx: |  |  | 9875.965 |
| Dd: | 1000 | PP: | 1000 |
| Dly: | 1000 | CP: | 1000 |
| O: Range: 0~9999.999mm |  |  |  |

Figure 2-2 Single-step program setting page
Step 2 Click , select parameter which needs to be set up, press numerical
key to input program value, press
 to complete input.
(1] 说明 Instruction
Parameter can only be set when Stop indicator is on.
Setting range of singe step parameter is shown in Table 2-1.

Table 2-1 Set up range of singe step parameter

| Parameter name | Unit | Set up range | Remarks |
| :--- | :--- | :--- | :--- |
| X | $\mathrm{mm} /$ inch | None | Current position of X axis, <br> can't be modified; |
| Y | mm/inch | None | Current position of Y axle, <br> can't be modified; |
| XP | $\mathrm{mm} /$ inch | 0 <br> 9999.999 mm | Program position of X <br> axle; |
| YP | $\mathrm{mm} /$ inch | 0 <br> 9999.999 mm | Target position of Y axle; |
| DX | ms | $0 \sim 99999 \mathrm{~ms}$ | Retract distance of X axle; <br> The time between <br> and end hold time output; |
| HT | 9999.999 mm |  |  |
| DLY | ms | $0 \sim 99999 \mathrm{~ms}$ | In case of single step, <br> delay time for X axle <br> concession; |


| Parameter name | Unit | Set up range | Remarks |
| :--- | :--- | :--- | :--- |
| PP | None | $0 \sim 99999$ | Number of preset work <br> piece; |
| CP | None | $0 \sim 99999$ | Number of current work <br> piece. |

Step 3 Press
system will execute according to this program, as shown in Figure 2-3.

| Single |  |
| :--- | ---: |
| $\mathrm{X}:$ | 9875.965 |
| $\mathrm{Y}:$ | 9875.123 |
| $\mathrm{C}:$ | 0 |
| $\mathrm{PP}:$ | 0 |

Figure 2-3 Single step operation page

## Operation example

Requirements: on single-step program page, program bending depth to 100.0 mm , back gauge position to 80.00 mm , retract distance to 50 mm , concession waiting time to 200 ms , holding time to 300 ms , work piece to 10 .

Operation steps are shown in Table 2-2.

Table 2-2 Operation steps of single step example

| Operation steps | Operation |
| :--- | :--- |
| Step 1 | Click, select"XP"parameter. |
| Step 2 | Input 80.00 by numerical key. |
| Step 3 | Click |
| Step 4 | Click $\quad, \quad$ select"YP"parameter. |
| Step 5 | Input 100.0 by numerical key. |


| Operation steps | Operation |
| :--- | :--- |
| Step 6 | Click , confirm set up of this parameter. |
| Step 9 | Click <br> "HT"parameter , select"DX"parameter, "DLY"parameter, <br> respectively. |
| Step 10 | Set up parameter to 50mameter"CP"parameter <br> numerical key. |
| Step 11 | Click 200ms, 300ms, 10,0 by |

### 2.2.2 Multi-step programming

Multi-step program is used for processing single work piece of different processing steps, realize consecutive implementation of multi-steps, and improve processing efficiency.

## Operation step

Step 1 power on, system enters to single-step parameter set up page automatically.
Step 2 Click $P$, switch to program manage page, as shown in Figure 2-4.


Figure 2-4 Program management page

Step 3 Click program number directly, such as input " 1 ".

Step 4 Click
 enter multi-step program setting page, as shown in Figure 2-5.

| PROGRAM1 |  |
| :--- | :--- |
| ST: | 1 |
| PP: | 99 |
| CP: | 9 |
| PLY: | 100 |
| HT: | 0 |
|  |  |
| Ø:Range: $0 \sim 25$ |  |

Figure 2-5 Multi-step program setting page

Step 5 Click , select multi-step programming parameter which requires set up, input setting up value, click , the set up takes effect.

Step 6 In completion of set up, click $\square$ enter step parameter set page, as shown in Figure 2-6.

| PROGRAM | $1 / 5$ ST |
| :--- | :---: |
| X: | 5.000 |
| Y: | 12345.000 |
| XP: | 9.000 |
| MP: | 5.000 |
| DX: | 25.00 |
| RP: | 54 |
| $\boldsymbol{O}:$ Range: | $0 \sim 9999.999 \mathrm{~mm}$ |

Figure 2-6 Step parameter set page
Step 7 Click , select step parameter that needs to be set up, input program value, click
 the setup takes effect.

Step 8 Click
 to switch over between steps. If the current step is the first step, click $\square$ to enter the last page of step parameter setting; if the current step is the last one, click $\square$ to enter the first page of step parameter setting. Multi-step parameter setting range is shown in Table 2-3.

Table 2-3 Multi-step parameter setting range

| Parameter name | Unit | Setting range | Remarks |
| :---: | :---: | :---: | :---: |
| Step number of program | None | 0-25 | Set up total processing step number of this program |
| Preset work piece number | None | 0~99999 | Number of work piece to be processed, decreasing piece when more than zero; negative increasing count. |
| Current work piece number | None | 0~99999 | Number of finished work piece |
| Concession delay | ms | 0~99999ms | Time between retract signal and concession execution. |
| Holding time delay | ms | 0~99999ms | Time between concession signal and end pressurize output |
| X | mm/inch | None | Current position of X axle, can't be modified; |
| Y | mm/inch | None | Current position of Y axle, can't be modified; |
| X target position | mm/inch | 0~9999.999mm | Program position of X axle; |
| Y target position | mm/inch | 0~9999.999mm | Target position of Y axis; |
| concession distance | mm/inch | 0~9999.999mm | Distance of X axle concession; |
| Repeat times | None | 1~99 | Repeat times required by this step. |

Step 9 Click , system will operate according to this program, as shown 2-7.

| PROGRAM 1 | Rp: $1 / 54$ |
| :--- | ---: |
| X: | 5.000 |
| Y: | 12345.000 |
| C: | 0 |
| PP: 12345 | St: $1 / 5$ |

Figure 2-7 Multi-step programming operation page

## Operation example

Requirements: one work piece requires processing 50 as shown below;
First bend: 50mm;
Second bend: 100mm;
Third bend: the other direction 300mm;
Analysis: according to work piece and technological conditions of machine tool:
First bend: X axle position is 50.0 mm , Y axle position is 85.00 mm , concession 50mm;

The second bend: X axle position is $100.0 \mathrm{~mm}, \mathrm{Y}$ axle position is 85.00 mm , concession 50mm;

The third bend: X axle position is 300.0 mm , Y axle position is 85.00 mm , concession 50mm;

Edit processing program of this work piece on No. 2 program.
Operation procedure is shown in Table 2-4.

Table 2-4 Operation steps of multi-step programming example

| Operation step | Operation |
| :---: | :---: |
| Step 1 | On single step parameter setting page, press $\square$ to enter program selection page. |
| Step 2 | Input "2", click $\square$ enter multi-step general parameter setting page of program 2. |
| Step 3 | Select "Program step", input " 3 ", click $\square$ the setting takes effect. |
| Step 4 | Select "number of preset work piece", input " 50 ", click $\square$ the setup takes effect. |
| Step 5 | Similar to step 3 and step 4, set "current work piece number", "concession delay" and "pressurize time" to 0 , 400, 200 respectively. |
| Step 6 | $\underset{\text { Click }}{\text { parameter. }} \square$ to enter first step setup page of step |


| Operation step | Operation |
| :---: | :---: |
| Step 7 | Select "X target position", input 50, click the setup takes effect. |
| Step 8 | Select "Y target position", input 85, click. the setup takes effect. |
| Step 9 | Similar to step 7, 8, set up "concession distance" and "repeat times" to 50, 1 respectively. |
| Step 10 | Click $\square$ to enter second step setup page of step parameter, the setup method is similar to that of step one. |
| Step 11 | Click again, to enter third step setup page of step parameter, the setup method is similar to that of step one and step two. |
| Step12 | return to setup page of the first step. |
| Step13 | system will operate according to this program. |

## 说明 Instruction

1. In completion of multi-step programming, return to start step before launching the system; otherwise, the program will start position processing at current step.
2, Press left and right direction key to circulate page turning and browsing among all step parameters.
2. Program can be called and revised again.
3. In completion of processing all work pieces ( 50 in the example), system come to stop automatically. Restart directly will start another round of processing 50 work pieces.

### 2.3 Parameter setting

User can setup all parameters required for normal operation of the system, including system parameter, X axle parameter and Y axle parameter.

## Operation steps

Step 1 On program management page, click $\square$ to enter programming constant page, as shown in Figure 2-8. On this page, programming constant can be set.

| CONST |  |
| :--- | ---: |
| mm/inch: | 0 |
| 中文/English: | 1 |
| X-tea.in: | 1.000 |
| Y-tea.in: | 1.000 |
| Release time: | 23654 |
| Version: | V 1.00 |
| Ø:Range: $0 \sim 9999.999 \mathrm{~mm}$ |  |

Figure 2-8 Programming constant page
Range of programming constant setup is shown in Table 2-5.

Table 2-5 Range of programming constant setup

| Parameter name | Unit | Setup range | Default | Remarks |
| :--- | :--- | :--- | :--- | :--- |
| X axle indexing | mm | $0-9999.99 \mathrm{~mm}$ | 0 | In teach enable, input <br> current position of X <br> axle |
| Y axle teach | mm | $0-9999.99 \mathrm{~mm}$ | 0 | In teach enable, input <br> current position of Y <br> axle |
| Metric/English <br> system | None | 0 or 1 | 0 | $0:$ metric, 1: English <br> system |
| Chinese/English | None | 0 or 1 | 0 | $0:$ Chinese, 1: English |
| Decompression <br> delay | ms | $0-99999 \mathrm{~ms}$ | 0 | Continue time of <br> unloading output after <br> starting the system. |
| Version number | None | None | None | Software _ version <br> information, V refers to <br> version, 1 indicates <br> version number, 0 <br> indicates version level. |

Step 2 Input password "94343", click

## $\rightarrow-\quad$

setting page, as shown in Figure 2-9.

| SYS PARA | 1/ 1PG |
| :--- | ---: |
| X-digits: | 3 |
| Y-digits: | 3 |
| X-safe: | 1.000 |
| Y-safe: | 1.000 |
| Step delay: | 3333 |
| \%:Range: $0 \sim 3$ |  |

Figure 2-9 System parameter setting page
Step up parameter, parameter setup range is shown in Table 2-6.

Table 2-6 System parameter setup range

| Parameter <br> range | Unit | Setup range | Default | Remarks |
| :--- | :--- | :--- | :--- | :--- |
| Decimal <br> point of X <br> axle | None | $0-3$ | 2 | Decimal point displayed <br> by X axle position <br> parameter |
| Decimal <br> point of Y <br> axle | None | $0-3$ | 2 | Decimal point displayed <br> by Y axle position <br> parameter |
| Safe <br> distance of <br> X axle | mm | $0-9999.999 \mathrm{~mm}$ | 0 | X axle keeps low speed in <br> this range |
| Safe <br> distance of <br> Y axle | mm | $0-9999.999 \mathrm{~mm}$ | 0 | Y axle keeps low speed in <br> this range |
| Change step <br> delay | ms | $0-9999 \mathrm{~ms}$ | 0 | Interval between valid <br> change step signal and <br> change step operation <br> executed |

Step 4 Click $P$, return to programming constant page.

### 2.4 Manual movement

In single-step mode, axle movement can be controlled by pressing key manually. This method helps user to adjust machine tool and work piece.

## Operation steps

Step 1 On single step parameter setup page, click $\square$ or $\square$ to enter manual page, as shown in Figure 2-9.

| MANUAL |  |
| :--- | ---: |
|  |  |
| $\mathrm{X}:$ | 9875.965 |
| $\mathrm{Y}:$ | 9875.123 |
| $\vartheta: \mathrm{X}$ current pos. |  |

Figure 2-9 Manual page
Step 2 Click + , operate at low speed in increasing direction.
Click ${ }^{-}$, operate at low speed in decreasing direction.
Click $++\square-=$, click $\square+$ at the same time, operate at high speed in increasing direction.

Click $++\square-=$, click $-\quad$ at the same time, operate at high speed in decreasing direction.

Step3 Click $\quad P$ return to single step parameter setting page.

## 5 <br> Alarm

### 3.1 Alarm

The device can detect internal or external abnormity automatically and send out alarm prompt. Alarm message is available on alarm list.

## Operation steps

Step 1 On programming management page, click
 to enter programming constant page.

Step 2 On programming constant page, click $\square$ to enter "Alarm history" page to view all alarm history.

As shown in Figure 3-1, the latest 6 alarms, alarm number and causes can be viewed on this page.

| ALARM RECORD |  |
| :---: | :---: |
| A. $24 \quad$ Mach. Not read |  |
|  |  |
|  |  |

Figure 3-1 Alarm history page
Alarm history and message is shown in Table 3-1.

Table 3-1 Alarm number and alarm message

| Alarm <br> number | Alarm name | Alarm description |
| :--- | :--- | :--- |
| A.01 | Count reached <br> prompt | Count reaches preset value |
| A.02 | Minimum soft limit | Minimum soft limit |
| A.03 | Maximum soft limit | Maximum soft limit |


| A.11 | Count reached <br> shut-down | When count reaches preset value, <br> system shut down automatically. |
| :--- | :--- | :--- |
| A.12 | Beam is not on <br> upper dead point | In single step and multistep mode, <br> slider is not on upper dead center. |
| A.21 | Limit <br> abnormal | Enitch |
| A.22 | Encoder failure | Encoder voltage is too low |
| A.23 | Communication <br> abnormal | Oil pump not started |
| A.24 Oil pump signal loss |  |  |
| A.41 | Parameter storage <br> error | None |
| A.42 | Abnormal power <br> failure | None |
| A.43 | System <br> self-checking error | None |

## Appendix 1 Common fault and troubleshooting

| Fault phenomena | Trouble shooting |
| :--- | :--- |
| When power on, <br> system will not <br> display. | Check whether No. $1(24 \mathrm{~V})$ and No. 2 (0V) terminal <br> is connected or not, or signal is reversed. |
| When X axle <br> programming is <br> operating, back gauge <br> motor does not move, <br> Y AXIS motor <br> moves. | Two motors are reversed. Reconnect. |
| When program is <br> operating, motor does <br> not move. | Check whether mechanical part has been locked or <br> slider returns to upper dead center. |
| Motor can't switch <br> from high speed to <br> low speed. | Check whether high-low speed signal has been sent <br> or motor power is too small. |
| When system is in <br> multi-step <br> programming, the <br> program can't change <br> step. | Check when slider is on upper dead center, No. 1 <br> (START) terminal is connected to +24V or not. |
| When system is in <br> multi-step <br> programming, the <br> program can't count. | Check when slider is on upper dead center, No. 5 <br> (COUNT) terminal is connected to +24V or not. |
| When programming <br> is operating, the <br> system loses control. | Check whether encoder cable is connected or not. <br> When programming <br> is operating, system <br> actual position will <br> not display or change.Check whether encoder wiring is correct or encoder <br> cable is connected well. |

## Appendix 2 Acronym

| Acronym | English interpretation |
| :---: | :---: |
| C |  |
| C | COUNT |
| CP | Current Pieces |
| D |  |
| DX | Retract |
| DLY | Delay time |
| H |  |
| HT | Holding time |
| P |  |
| PP | Preset Pieces |
| S |  |
| ST | STEP |
| X |  |
| X | X-axis |
| XP | X -axis position |
| Y |  |
| Y | Y-axis |
| YP | Y-axis position |

